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120 SUMMARY 

The excitation of the dominant '11\1 surface wave on a cylindrical  reacCive 

surface i s  discussed, 

conducting, in f in i te ly  th in  cylindrical surface of radius b coaxial with a 

cylindrical  reactive surface of a radius a where b > a. The reactive 

surface extends from 

from -40 < z 5 0. The incident f i e l d  is the dominant TM mode i n  the coaxial 

portion of the structure propagating in the  positive z-direction. 

The surface wave launcher consists of a perfectly 

-00 < z <OD, and the perfectly conducting surface extends 

Numerical resu l t s  are  obtained fir the  reflected field,  t he  surface 

wave field,  and the radiation field.  

the results tha t  use two approximate aperture distributions, 

These results axe then compared with 

This method of excitation w&lj very ef f ic ien t  over a large range of 

14 J - T u ~ Q  frequencies and over wide variations in the  surface reactance, 

nrJ!Romcl!Im 
The problem of exciting surface waves on VBZ~OUS types of structures has 

been t reated t o  a great extent i n  the literature,' A general. requirement 

fo r  a good surface wave launcher is that it have a high launching efficiency 

over a large frequency bandwidth. 

. 
2 Brawn has shown that the launching ef- 

ficiency of a finite-sized launcher can be made a rb i t r a r i l y  close t o  100 per- 

cent. This large efficiency can be realized, however, only a t  the expense of 

frequency bandwidth. 

* Member of IEEE. 
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The majority of numerical data presently available on launchers is f o r  

the class of  launchers that are infinitesimal Fn scene dimension, To this 

class belong the launchers in the form of short electric and magnetic current 

elements, l ine  13~nrcee, current loops, slbts, etc, 

be characterized by a d e l t a  f'unctim in me  or more of the coordinates, 

case of  the fiaite-sized aperture canbe handled, at least in theory, by 

a superyosition of infinitesimal sourcesd In practice, it is usually pro- 

hibit ive t o  carry out t h i s  superposition, first, because of the complexity 

involved in  the calculation and, second, because the aperture distribution 

may be unknown, 

by a "chwed" surface waw d i s t r i b n t i a j  that is, the f ie lds  i n  the aperture 

plase a r e  assumed t o  have the same form as the snrface waye fields within the 

aperture and are assumed t o  vanish everywhere &side of the aperture. 

Another of%en used approximation method is Kirchhoff's approximation, 

this method the aperture f ie ld  is assumed t o  be of the same form as the un- 

perturbed incident field, 

easily coqutedby an integration over the aperture plane since the surface 

wave modes and the radiation f i e l d  are orthoganal.3 

Each of these ~ources  can 

"he 

In  this case, the aperture distribution is  often appmximted 

In 

For either case the surface wave amplitude can be 

The purpose of t h i s  paper is t o  obtain rigorously the launching charac- 

ter is t ics ,  radiation pattern, and frequencybandwidth for a finite-sized 

launcher, These results w i l l  then be compared with the results for the 

"chopped" surface wave distribution and with the results using Kirchhoff's 

approximation, 

me structure t o  'be considered i s  shown i n  figure 1, The structure con- 

sists of a reactive cylindrical surface of radius a and of in f in i te  extent 
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i n  the z-direction. 

fec t ly  conducting surface of radius b for z 0, The surface wave field, 

radiation field, and the reflected field will be computed when the incident 

f ie ld  is the daminant TM mode i n  the reg la  

t o  the right, 

Coaxial with this cylinder is an infinitely thin, per- 

a < r < b, z < 0, popagating 

FORMITLATItllV OF TRE PROBLEM 

This problem falls into the class of two-part boundary value problems 

which cazl be handled by the Wiener-Hopf technique, 

carried out for a range in the parameters of the structure where only the 

dominant 'IM mode propagates in the region 

all of the f ie ld  ccmpcments can be derived from a scalar function q(r , z )  

because of the circular symmetry of the structure, 

is the 8 camponent of the magnetic field. 

The analy~is will be 

a < r < b, z < 0. I n  t h i s  caSe 

The function Jr(r,z) 

I n  the region a < r < by z < 0, Jl(r,z) can be expanded i n  a series 

of the proper eigenfunctions: 
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1 

= p2n - k2, n > l  - 
where k is the free-space wave number, X, is L e  surface reac,ance, an 

Zo The eigenfunctions in 

( l a )  correspond t o  the 

The dominaut mode will degenerate into a TEM mode as the surface 

reactance ~€mif3hf?6* 

is the characteristic impedance o f  f'ree space. 

% modes in the coaxial podion of the structure. 

In the region z > 0, r > a, q(rFz) w i l l  consist of a radiation f ie ld  

and a surface wave mode  of t h e  form 

2 -JS@ B#1( - 3 v )  e 

where 

and 

$; = ht + k2 

The surface wave mode ( lb)  is the !LT4o mode or  the GoLibau wave. Only one 

subscript i s  necessary in  denoting t h e  surface wave modes since all of the 

modes have an evanescent character i n  t he  r a d i a l  direction, A t i m e  varia- 

tion f o r  the f ie ld  components of ejurt has been assumed. 

It is convenient t o  decompose t h e  t o t a l  f ie ld  qi(r ,z)  into t w o  parts: 

aa incident f i e l d  qi(r,z) and a scattered f ie ld  qS(r,z) where 
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Jr(r,z) = $i(r,4 + Jrs(r,d 

The incident f i e l d  is the 

a < r C b  a n d a l l  z. 

'IlMoo ?!Iode and w i l l  eldSt by definit ion fo r  

Since the incident f i e ld  does not satisfy the  proper b0unda.T.g conditions f o r  

z > 0, the scattered f i e l d  will be expected t o  contain a term of the  'same 

form as qi(r,z) f o r  z > 0 t o  nul l i fy  t h i s  improper solution. 

tered f i e l d  satisfies the following canditions: 

The scat- 

Equations (4 )  and (5) are a statement of the  boundary conditions on the reac- 

t i v e  surface and on the  perfectly conducting surface, respectively. Qua- 

t ion  (6) requires the  scattered f i e l d  t o  be discontinuous at r = b by an 

amount equal t o  the  discontinuity in the  incident f ie ld ,  wh ich  thus makes 

the  t o t a l  f i e l d  continuous. 

e l ec t r i c  f i e l d  continuous a t  r =I, 

Equation (7) is  equivalent t o  making t h e  axial 

The solution fo r  the scattered f i e ld  can be formulated i n  terms of the  
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bilateral  Laplace transformation of (3) along with the  associated boundary 

conditions, Let 

cp(r,4 = cp+(r,LD) + cp-(r,4 

where 

ana 

III order t o  make cp+(r,u)) and cp-(r,a) analytic functions of LD i n  a com- 

mon region i n  the ahplane, the propagation canstants yo and po are 

made cowl= 3ro = JrC, + 5 3p0 = 3sb + B;, r;, f;, SA, 
and pb  are real. I n  the final solution Yo and p i  w i l l  be set equal 

t o  zero- Taking the transforms of (3), (4), and (5) gives 

(9) 2 a (q) + acp = 0, r S  r = a  

(q-) =o, r = b  F S  
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f o r  

a < r < b  

and 

f o r  r > b where h E &-. The branch of 

‘be selected t o  satisfy the radiation condition. 

(12) 

h where I m h < O  m u s t  

 he -own coefficients rp(b-,co) and ~(b+,ta) i n  (11) and (12) cazl 

be determined by the  discontinuity conditions on the scattered f i e ld  a t  

r = b. This can easily be accomplished by introducing the f’unctians J+(b,m) 

and J-(b,cu) where 

and 

J+(b,co) can be calculated at  Once by wing (6). 

R w >  - G (13) 
+ 1 J (to,b) = - 

03 + 3ro’ 

From the definitions of J+(b,a) and J-(b,to) and (13) it is apparent that 

Using boundary condition (10) gives 
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The coefficients 

cp+'(b,m) a d  known functions of w by perfarming the indicated differentia- 

t i ons  with respect to r on (=) and (=). Substituting these results 

into (14) gives 

cp(b-,w) and cp(b+,ro) can now be expreseed in t e r n  of 

1 q)+'(b,m)F(m) = J-(b,a) + - 
a +  3ro 

w h e r e  F(a) is a know& function of cn. The function F(ro) iB written ex- 

p l i c i t l y  in the appendix along with its Wiener-go@ factorization, 

It is  convenient t o  write ~ ( m )  &E, a product of functions 

F(m) = K(a>)L(m)M(a)N(u)(u? + 4)-' (16) 

where K(m), L(cD), M(m), and N ( a )  are defined i n  the appendixl 

F(m) c m  be pat into the form 

The function 

F ( 4  = F+(4/F-(a) 
r 

by a Wiener-Holgf fac tor iza t im where @(a) is analytic and nonzero for 

Rea, > - V& and 

notation of (16), F+(m) and 

F ( m )  is antilytic and nonzero for Rea, < f& I n  the 

T ( m )  can be expressed as 

~' (4 = ~ ( m > ~ ' ( ~ ) ~ - ( ~ ) ~ ( m ) ~ ( m )  (a - jro) 
where p(m) is  analytic everywhere i n  the  finite *plane. me f'unctian 

p(m) must be selected t o  give 

than expoaential behavior at infinity, 

forms of $(a) and P ( m )  are 

@(a) and P(m)  algebraic behavior rather 

It can be shawn t h a t  the asymptotic 

= o(mm1/2) as m-, 

F'(m) = O ( C & / ~ )  as a)-+ - 03 

Equation (15) can now be rewritten in  the form 
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The le f t  s ide of (18) is analytic for Rem > - yo, and the r igh t  side . is  

analytic far Rea, < ro* 
-yo < Rem 4 Po. 

The equaUty i n  (18) holds only in the region 

Figure 2 shows the ream i n  the complex -plane where 

the VRrioUs transform8 are  8 m i i y t i C .  

The solution for the  scattered f i e ld  i s  not unique unless the edge 

conditions are specified a t  

axial campoarent of the e l ec t r i c  f i e l d  t o  be of the order 

edge, w h i c h  makes the transform of the e l ec t r i c  f i e ld  (Le., @'(%,a)) of 

the order as a- ar, A similar conditian exis ts  for  the a6ymPtCrtic 

form of the current a t  the edge, J-(b,a,) t o  be of 

the Order a-1 BB a, 4 - oa, S d s t i t u t i n g  these resu l t s  into (18) s h m  

r = b, z = 0, ~ h e s e  c m d i t i m s  require the 

zm1h at the 

This condition requires 

t h a t  each side of (18) approaches zero BB 

proper half plane. 

equated t o  zero, 

u) go- t o  i n f in i ty  i n  the 

Thus, on applying LioUVIUe's theorem, (18) can be 

Setting the left side equal t o  zero gives 

Note that the proper edge conditians axe sa t i s f ied  in (19). 

EXALUATION OF SC- FIELDS 

The functian cp+'(b,a) i n  (19) can be computed i n  terms of cp(b',a) 

frcnn (u) or  i n  t e r m  of ~(b+,m) from (12). using (XL) gives 
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The scattered 

The inversion 

field, evaluated at  r = b, can now be found by inverting (20). 

/I 

contour C must be i n  the region my'" < Rea, < as shown 0 
i n  figure 3 and be on the proper sheet of the Riemann surface. 

cuts w e r e  selected & ~ i  straight l i n e s  extending radial ly  from the branch 

points. 

The branch 

For z < 0 the contour can be closed i n  the right half cu-plaue with a 

semicircle of infinite radius, which is deformed around the branch cut. 

contribution t o  the  intern along the semicircle and branch cut is zero. 

Thus, Jrs(b-,z) can be expressed i n  terms of the residues of cp(b',cu) for 

z < 0. 'The poles Qf cp(b',cD) are due t o  the zeros of T(a) for 

Rem > - yo. In the notation of (16) a l l  of the zeros of 

in the term N-(m)(a, - jro). The zero a t  cu = jro corresponds t o  the  

dominant %o mode, and the zeros at  w = rn correspond t o  the higher 

order % modes, For z << 0, r = b-, the scattered f i e ld  w i l l  consist 

of only the %o reflected mode since the TMon (n  > 1) modes are 

evanescent. Thus, 

The 

F-(cu) are contained 

- 

f o r  z << 0, 

z < 0, has already been determined in (la). 

The radial  dependence of the scattered f ie ld  for a < r <b, 

The scattered f ie ld  f o r  z > 0 can be found by closing the contour 

with a semicircle of inf ini te  radius in the left  half u-plane. 

tour must be deformed mound the b m c h  cut, 

Agah, the con- 

For z > 2(b - a) the  contribu- 
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t i on  t o  the integral  along the semicircle is zero. 

f i e ld  can be evaluated i n  terms of the residues of 

cut integral. The function cp(b’,co) has two poles for  Rem < v&. The 

surface waae pole is located a t  

a = -jy, gives rise t o  a f i e l d  tha t  cancels the incident f i e l d  for 

I n  the notation of (16) the surface wave pole corresponds t o  a zero of 

&(a), and the pole a t  (u = -jro appears expl ic i t ly  i n  cp(b-,w). Evaluat- 

ing the  residues gives 

Therefore, t h e  scattered 

cp(b-,m) and the branch 

63 = -Jfio, and a second pole, located a t  

z > 0. 

+ Branch cu% integral (22) -JY@ -e 

f o r  z > 2(b - a). 
‘lY.+, surface wave. 

determined i n  (1%). 

since Jri(b-,z) E e . 

The first tern cm the right in (22) corresponds t o  the 

The rad ia l  dependence of the surface waw mode has been 

The second term cancels the incident f i e l d  fo r  z > 0 

-jr$ 

The scattered f i e l d  fo r  r > b can be found by evaluating q~+’(b,co) 

*om (12) and substi tuting the result in to  (19), The result is 

f o r  r >b, 

by saddle-point integration, 

by a suitable change in  the variable of integration and a transformation of 

r and z in to  spherical coordinates. L e t  a, = -jk sin Y where 

The asymptotic form of the radiated f i e l d  can be determined 

This integration can be easily carried out 
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Y = Q + 37, r = p cos cp, and 

(23) becmes 

z = p sin cp (see fig. 1)- With these changers 

P 

2 -jkp sin ~p 5h-v Hl(kp cos cp cos v)F-(-jyo)e 
Jls(P,cp) = - ZnJ dv (24) @(kb COS V)Ft(-jk sin v)(rg - k sin Y) 1, 

If the c a t o u r  C' 

cos cp # 0, then f o r  sufficiently h r g e  kp 

Hf(kp cos cp cos v ) ,  i n  (24) c a n  be replaced by i ts  asymptotic form 

doeEl not pass through a point where cos v = 0, and if 

the Hankel function 

-j kp C 0 6  ~p C 0 6  Y - 4 
<(kp cos cp cos v) 2: -\- kpa cos cp cos Y e ( "> 

where terms of the order (kp)O3I2 

tered f i e l d  is now given by 

and lower have been neglected, The scat- 

1 f 

(25) 

f o r  (kp) >> 1. The steepest descent contour C' (fig. 4) passes through the 

saddle point Y = cp and , i n  general, s a t i s f i e s  the equation 

Re[k COS(Y - c p ) ]  = Rek. As the obsemtion angle cp approaches x/2 the  

contour C' w i l l  cmss the surface wave pole. For this range of cp the 

surface wave must be included in  the expression fo r  the to t& scattered f i e l d .  
b 

The integral  i n  (25) can be evaluated by expanding the exponent i n  a Taylor 

ser ies  about v = cp and retaining only the first t w o  terms. The resu l t  is 

'- ,+x/2) 

%I?+( -jk s i n  cp)Hg(kb cos rp) ( r o  - k s in  cp) (kp cos cp) 
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for  (kp) >> 1, 
i s  the 8 component of the m a g n e t i c  f i e ld  in  cylindrical coordinates, When 

the change W&B made t o  spherical coordinates, the form of the scattered 

f i e l d  did  not have t o  be modified since the 

pressed in cylindrical  and spherical coordinates are identical, 

It should be noted a t  this point that the function JIE(r,z) 

8 components of a vector ex- 

The radiated f i e l d  as expressed i n  (26) is of the general form 

-JkP 
( 2 7 )  

e 
Jrs(P,rp) = G ( d  Irp 

If more terms were retained in the asymptotic ex-pa.nsion of the Hankel func- 

t ion  and i n  the expansion of the exponent i n  (25) ,  Jrs(p,cp) would contain 

terms of the order (kp) -312 give a 

be t t e r  approximation for the radiated f ie ld ,  bnt they would not contribute 

any net radiated power, The f l o w  of energy in  the  structure can be deter- 

and lower. m e  ada i t i and  terms 

mined en t i re ly  f r o m  the amplitudes of the modes computed in ( U )  and (22) 

and from the  radiated f i e l d  as given in  (26)- 

FLESETS 

“he amplitudes of the various modes were computed 011 an IBM 7094. Some 

typical  results are shown in figures 5 t o  8. 

power, reflected power, and rad ia ted  power t o  incident power are shown as 

f’unctigns of kd where d b - a, The range of kd is res t r ic ted  EO 

that only the 

ture, 

surface waves even when the surface reactance is quite low, 

broad banded as evidenced by t he  small reflected power over a large range 

of kd, 

The rat io8 of surface wave 

‘IMOO mode w i l l  propagate in the coaxial portion of  the  struc- 

The results show t h a t  this structure is very eff ic ient  i n  launching 

It is a l so  

The curves f o r  the radiation pattern have been normalized by se t t ing  
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the  maximum value of the power density in  the forward direction equal t o  1. 

The radiation f i e l d  approaches zero as the observation angle cp approaches 

A / Z ,  a t  l ea s t  t o  the first order i n  (kp)'*, 

by Kane as the  K a r p - K a r a l  lemma, 

pattern becomes singular as cp approaches -~ /2 .  It can be shown that 

G(cp), defined i n  (27), is  of the form 

This phenomenon is referred t o  

In the back direction, the radiation 

f o r  The same type of singularity is  a l so  present i n  the 

radiation pattern of a c i rcular  wave guide when the incident f i e l d  is the  

1 ~ r / 2  + 'pi << 1. 

modeO5 The radiation patterns for other values of surface reactance 

are quite similar t o  that shown i n  figure 8, 

increased the beam width becomes slightly smaller for  a fixed value of kd. 

Figure 9 shows the launching efficiency VS. kd fo r  the structure. 

Exact results a re  presented along with the  results using Kirchhoff's approxi- 

mation and the "chopped" surface wave distribution, The approximat$on 

techniques give quite accurate results f o r  kd >1. The values of kd when 

the approximations fail also gfve a large reflected power as shown i n  f ig -  

ure 5. The launcher would not be useful i n  this range of kd unless erne 

impedance matching technique were employed. 

both exact and approximate, for  other values of surface reactance have the 

same general behavior as those shown i n  figure 9. 

"chopped" surface wave distribution was found t o  be a be t t e r  approximation 

than Kirchoff's approximation. 

A s  the surface reactance is 

The launching characteristics, 

In a l l  cases, the  
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APPEKDM 

The function F(w) is expressed, for convenience, as the product of 

functions 

where 

and 

It is not necessary t o  compute both K+(cD) and K-(co) since if ,  for 

example, K-(o) is known, then K'(c0) c m  be obtained from its definition 

e ( m )  K(cD)K'(u), @(a) can a lso  be obtained from the re la t ion  

K + ( % ) K - ( T ~ )  = 1 since ~ ( m )  is an even m c t i h  of Lu. The same is t rue  

fo r  L(cn), M(m), and N(m) since they are a l l  even functions of OD. K-(u) 

can easily be determined by inspection giving 

K'(m) = (~b/2j)l/~(w - jk)1/2 
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The functions 

formula t o  a s t r i p  in the complex w-plane. The functions L-(w) and K(o) 

L’(a) and K ( w )  can be found by applying Cauchy’s integral 

can not be expressed in  terms of elementary functions, but they can be 

written in  the integral forms:‘ 

L-(CU) = e- 

c - P*V, 2& 

k 
jkx - E  

where P.V. denotes the principal value of the integral and 

The function N(ru) can be factored by expressing it as an inflnite product. 

 his is possible since ~ ( c u )  i s  an even function of &PTZ and has 

s ingda r i t i e s  i n  the form of simple The result is 

The function p(w) must be selected t o  give @(a) and T ( m )  algebraic 

behavior as la[ + =. The proper p(m) is 
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where r is Euler's constant and 
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Figure 1. - Surface wave structure. 
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F i g u r e  2 .  - Regions in complex w-plane where transforms are 
analytic. 
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Figure 5. - Percentage of lncldent power coupled t o  the sur- 

face wave VS.  kd for constant values of surface reactance 
x,; b/a. 2.3. 
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F i g u r e  6. - Percentage  of i n c i d e n t  powel. ccupled  t o  t h e  re- 
f l e c t e d  wave v s .  kd f o r  c o n s t a n t  v a l u e s  of s u r f a c e  re- 
a c t a n c e  x,; b/a, 2 . 3 .  



40 

8e 

1.0 - 
- 

.e - 
- 

.6 - 
- 

.4 - 
- 

.2 - 
- 

Z - 

0 

.5 zo  0 1.0 zo 2.5 3.0 

.5 I .o I .5 2 .o 2 .o 2.5 3.0 .5 I .o I .5 
kd 

F i g u r e  7.  - Percen tage  of i n c i d e n t  power coupled t o  t h e  ra- 
d i a t e d  wave v s .  kd for c o n s t a n t  v a l u e s  of s u r f a c e  re- 
a c t a n c e  x,; b/a, 2.3. 

I I I I I 

-90 -70 -50 -30 -10 0 IO 30 5 0  70 90 

+ ,DEG 
F i g u r e  8 .  - The r a d i a t i o n  pattern; X,, 1.0 20 ;  b/a, 2 .3 .  



8e 
>- 

w 
0 

0 z 

LL 
LL 
w 
(3 

I 
0 
Z 
3 

-I 

z 

a 

100 

00  

60 

40 

20 

0 

DISTRIBUTION 

/KIRCHHOFFIS APPROXIMATION 

.5 I .o 1.5 2.0 2.5 
k d  

F i g u r e  9 .  - Launching e f f i c i e n c y  v s .  kd; X,, 0 . 5 ;  
b/a, 2.3. 

NASA-CLEVELAND. OHIO E-2398 


